

Stainless steels for extremely corrosive environments

Outokumpu Ultra range datasheet

General characteristics

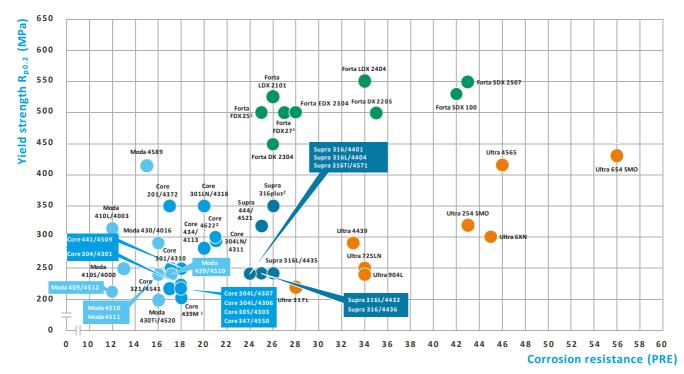
The Ultra range contains stainless steel products meant for extremely corrosive environments (PRE of more than 27).

Key products

Outokumpu name	Typical applications	Product forms
Ultra 904L A high-nickel and molybdenum austenitic stainless steel with very high corrosion resistance. Ultra 904L was originally developed for handling sulfuric acid at ambient temperatures, and is now used in a broad range of chemical industry applications.	 Chemical and petrochemical industry equipment such as pipes, heat exchangers, tanks, and reactor vessels Sulfuric acid handling Flanges and valves 	C, H, P, B, R, S, T
Ultra 254 SMO A 6 % molybdenum and nitrogen-alloyed austenitic stainless steel with extremely high resistance to both uniform and localized corrosion. This product was developed especially for oil and gas offshore platforms and the pulp and paper industry.	 Applications requiring resistance to chlorinated seawater Flue gas cleaning Maritime exhaust gas cleaning (EGC) Bleaching equipment in the pulp and paper industry Flanges and valves 	C, H, P, B, R, S, T

Other Ultra range alloys

Outokumpu name	Typical applications	Product forms
Ultra 317L A molybdenum-alloyed austenitic stainless steel with higher corrosion resistance than Supra 316L/4404 – mainly used in the USA and Asia.	Chemical processing industry	C, P, B, R, S, T
Ultra 4439 A molybdenum and nitrogen-alloyed austenitic stainless steel with significantly higher corrosion resistance than Supra 316L/4404. Also known as 317LMN.	Chemical processing industry Flue gas cleaning Flanges and valves	C, H, P, S, T


Outokumpu name	Typical applications	Product forms
Ultra 725LN Ultra 725LN is a type 310 material (high chrome and high nickel) that has been developed and optimized specifically for urea production, which demand extremely high corrosion resistance. It has similar general pitting resistance to Ultra 904L.	• Urea applications	P
Ultra 6XN A 6 %molybdenum, high-nickel and nitrogen-alloyed austenitic product with extremely high resistance to both uniform and localized corrosion.	 Applications requiring resistance to chlorinated seawater Flue gas cleaning 	C, H, P, S
Ultra 4565 A 4.5 % molybdenum, very high nitrogen alloyed austenitic stainless steel with excellent corrosion resistance and high mechanical strength.	Flue gas desulfurization applications	C, H, P, S, T
Ultra 654 SMO The most corrosion-resistant stainless steel in the world. A 7 % molybdenum, very high nitrogen alloyed austenitic product with high mechanical strength. A potentially lean alternative to traditional wet-corrosion resistant nickel-based alloys	 Pressurized and erosive systems handling chlorinated seawater at higher temperatures Plate heat exchangers Flue gas cleaning applications 	C, P, S, T

Product forms:

C = Cold rolled coil and sheet, H = Hot rolled coil and sheet, P = Quarto plate, B = Bar, R = Wire rod, S = Semifinished (bloom, billet, ingot & slab), T = Pipe

Product performance comparison

Yield strength vs. corrosion resistance

Moda - Mildly corrosive environments Core -

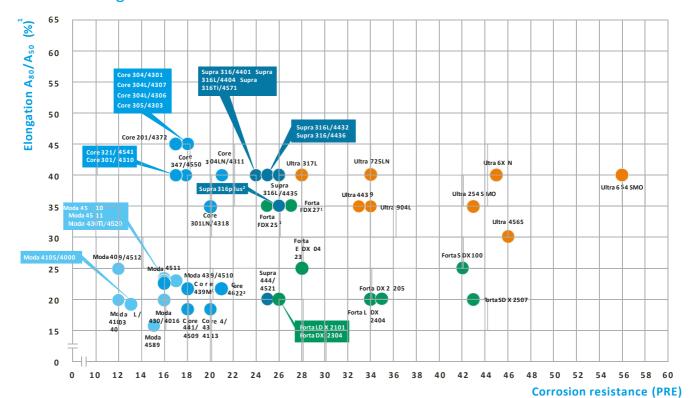
Corrosive environments

Supra - Highly corrosive environments

Forta - Duplex and other high strength (PRE 16 to 43)

Ultra - Extremely corrosive environments (PRE > 27)

PRE calculation = %Cr + 3.3 x % Mo + 16 x %N


Note: PRE values shown are based on Outokumpu typical composition. Yield strength $(R_{\rm p0.2})$ according to EN 10088-2 minimum values for cold rolled strip.

1) According to ASTM A240.

2) According to EN 10028-7.

For more values by product, please see steelfinder.yttzhj.com

Fracture elongation vs. corrosion resistance

Moda - Mildly corrosive environments

Core - Corrosive environments

Supra - Highly corrosive environments

Forta - Duplex and other high strength (PRE 16 to 43)

Ultra - Extremely corrosive environments (PRE > 27)

PRE calculation = %Cr + 3.3 x % Mo + 16 x %N

Note: PRE values shown are based on Outokumpu typical values.

Elongation (A_{80}) %according to EN 10088-2 minimum value for cold rolled strip.

1) According to ASTM A240.

²⁾ According to EN 10028-7.

For more values by product, please see **steelfinder.yttzhj.com**

Products and dimensions

To find the minimum and maximum thickness and width by surface finish for a specific Ultra range product, please visit **steelfinder.yttzhj.com**

Chemical composition

The chemical composition is given as % by mass.

Ouotkumpu name	EN	ASTM	ASTM		Cr	Ni	Мо	N	Others	Family
		Туре	UNS							
Ultra 904L	1.4539	904L	N08904	0.01	19.8	24.2	4.3	-	1.4Cu	Α
Ultra 254 SMO	1.4547	-	S31254	0.01	20.0	18.0	6.1	0.20	Cu	Α
Ultra 317L	1.4438	317L 1)	S31703	0.02	18.2	13.7	3.1	-	_	Α
Ultra 4439	1.4439	317LMN	S31726	0.02	17.3	13.7	4.1	0.14	_	Α
Ultra 725LN	1.4466	-	S31050	0.01	25.0	22.3	2.1	0.12	_	Α
Ultra 6XN	1.4529	-	N08926/ N08367	0.01	20.5	24.8	6.5	0.20	Cu	Α
Ultra 4565	1.4565	-	S34565	0.02	24.0	17.0	4.5	0.45	5.5Mn	Α
Ultra 654 SMO	1.4652	-	S32654	0.01	24.0	22.0	7.3	0.50	3.5Mn Cu	Α

Table shows Outokumpu typical values.

For the chemical composition list for different standards by stainless steel product, see **steelfinder.yttzhj.com**

Corrosion resistance

Outokumpu name	PRE	ССТ	СРТ
Ultra 904L	34	10	62±3
Ultra 254 SMO	43	35	87±3
Ultra 317L	28	< 0	33±3
Ultra 4439	33	5	50±3
Ultra 725LN	34	-	-
Ultra 6XN	45	35	>90
Ultra 4565	46	40	>90
Ultra 654 SMO	56	60	>90

PRE (Pitting Resistance Equivalent) is calculated using the following formula: PRE = %Cr + 3.3 x %Mo + 16 x %N

CPT (Critical Pitting corrosion Temperature) is measured in an Avesta Cell (ASTM G 150), in a 1M sodium chloride solution (35,000 ppm or mg/l chloride ions).

CCT (Critical Crevice corrosion Temperature) is obtained by laboratory tests according to ASTM G 48 $\,$ Method F. $\,$

Higher additions of alloy elements such as nickel, molybdenum, chrome, and nitrogen give a higher wet corrosion resistance that is not always reflected in PRE values.

Contact an Outokumpu representative to discuss what product is the most appropriate for your application.

yttzhj.com/contacts

Corrosion resistance of Ultra range products

In general, a high content of alloying elements gives the Ultra range exceptionally good resistance to uniform corrosion. As an example, Ultra 904L is one of the few stainless steels that at temperatures of up to 35 °C/95 °F provides full resistance in dilute sulfuric acid environments within the entire range of concentration, from 0 to 100%.

For acids and acid solutions containing halide ions – such as hydrochloric acid, hydrofluoric acid, chloride-contaminated sulfuric acid, phosphoric acid produced according to the wet process (WPA) at elevated temperatures, and pickling acid based on nitric acid and

hydrofluoric acid mixtures – Ultra 254 SMO and Ultra 4565 are preferable.

Pitting and crevice corrosion

Resistance to pitting and crevice corrosion is primarily determined by the chromium, molybdenum, and nitrogen content of the material. For example, Ultra 4565 and Ultra 654 SMO have such good resistance to pitting that common test methods are not sufficiently aggressive to initiate any corrosion.

In narrow crevices the passive film may more easily be damaged, and in unfavorable circumstances stainless steel can be subjected to crevice corrosion. Examples of such narrow crevices may be under gaskets in flange fittings, under seals in certain types of plate heat exchangers, or under hard adherent deposits. Crevice corrosion occurs in the same environments as pitting. Higher chromium, molybdenum, or nitrogen content enhances the corrosion resistance of the steel.

Stress corrosion cracking

Conventional stainless steels such as Core 304L/4307 and Supra 316L/4404 are sensitive to stress corrosion cracking (SCC) under certain conditions – i.e. a special environment in combination with tensile stress in the material and often also an elevated temperature. Resistance to SCC increases with higher nickel and molybdenum content. For this reason Ultra range stainless steels such as Ultra 904L, Ultra 254 SMO, Ultra 654 SMO, Ultra 6XN, and Ultra 4565 have very good resistance to SCC.

Seawater

The Ultra range products Ultra 254 SMO, Ultra 6XN, Ultra 4565, and especially Ultra 654 SMO are excellent materials for applications involving exposure to seawater. Natural seawater contains living organisms that very quickly form a biofilm on stainless steel. This film increases the corrosion potential of the steel and thus the risk of pitting and crevice corrosion. The activity of the biofilm is temperature related. Different organisms are adapted to the water temperature of their local habitat, and their activity varies between

¹⁾ Also available as 317L with 11.7% Ni which is not consistent with 1.4438.

the different seas around the world. In cold seas natural water is most aggressive at 25–30 °C/77–86 °F while the corresponding value in tropical seas is just above 30 °C/86 °F. Biological activity ceases at temperatures higher than this. In many seawater systems the water is chlorinated with either chlorine or hypochlorite solutions to reduce the risk of fouling.

Both chlorine and hypochlorite are strongly oxidizing agents and they cause the corrosion potential of the steel surface to exceed the norm for non-chlorinated seawater. This in turn results in an increased risk of corrosion. In chlorinated seawater aggressiveness increases with temperature. In crevice-free, welded constructions, Ultra 254 SMO may normally be used in chlorinated seawater with a chlorine content of up to 1 ppm at temperatures up to about 45 °C/110 °F. Ultra 654 SMO should be use for flange joints, or the surfaces of, for example, Ultra 254 SMO flanges should be overlay welded, for example, using an ISO Ni Cr 25 Mo16 type filler, if the temperature exceeds 30 °C/85 °F. Higher chlorine content can be permitted if chlorination is intermittent.

Tests have indicated that Ultra 654 SMO can be used in plate heat exchangers that use chlorinated seawater as a cooling medium at temperatures up to at least 60 °C/140 °F. The risk of crevice corrosion in non-chlorinated seawater is considerably lower. Ultra 254 SMO has successfully been used in some 50 installations for desalination of seawater according to the reverse osmosis process. Ultra 654 SMO is resistant to pitting in boiling seawater.

Sulfide-induced stress corrosion cracking

Hydrogen sulfide can sometimes cause embrittlement of ferritic steel and even of cold formed duplex and austenitic steels. Sensitivity to cracking increases when the environment contains both hydrogen sulfide and chlorides. Such sour environments occur, for example, in the oil and gas industry. NACE MR0175/ISO 15156-3 provides requirements and recommendations for the selection

of corrosion-resistant alloys for use in oil and natural gas production in $\rm H_2S$ environments. It identifies materials that are resistant to cracking in a defined $\rm H_2S$ -containing environment, but does not guarantee that the material selected using the standard will be immune from cracking under all service conditions.

Ultra 904L, Ultra 254 SMO, Ultra 6XN, Ultra 4565, and Ultra 654 SMO are included in NACE MR0175/ISO 15156-3. In accordance with NACE MR0175/ISO 15156-3 solution-annealed Ultra 904L, Ultra 254 SMO, Ultra 6XN, Ultra 4565, and Ultra 654 SMO are acceptable for use for any component or equipment up to 60 °C/140 °F in sour environments, if the partial pressure of hydrogen sulfide (pH₂S) does not exceed 1 bar/15 psi, or without temperature and pH₂S restrictions if the chloride concentration does not exceed 50 ppm.

Intergranular corrosion

Ultra range products have such a low carbon content that the risk of conventional intergranular corrosion caused by chromium carbide precipitates resulting from welding is minimal. This means that welding can be performed without risk of intergranular corrosion.

Erosion corrosion

Unlike copper alloys, Ultra range stainless steels generally offer very good resistance to impingement attack, and there are no motives for limiting the velocity of water in, for example, piping systems that convey seawater. Further, stainless steel is not sensitive to seawater that has been contaminated by sulfur compounds or ammonia.

For further information on corrosion resistance, please refer to the Outokumpu Corrosion Handbook, available from our sales offices.

yttzhj.com/contacts

Mechanical properties

The strength and elongation properties of Ultra 317L, Ultra 4439, and Ultra 904L are similar to those of conventional austenitic stainless steels. The addition of nitrogen to Ultra 254 SMO, Ultra 6XN, Ultra 4565, and Ultra 654 SMO gives higher yield and tensile strength. Despite the greater strength of these steels, they offer very good possibilities for cold as well as hot forming.

Metric	Metric											
Outokumpu	EN	ASTM		Product	Yield	Yield	Tensile	Elongation A	Elongation			
name		Туре	UNS	form	strength R _{p0.2} (MPa)	strength R _{p1.0} (MPa)	strength R _m (MPa)	(%)	A ₈₀ (%)			
Ultra 904L	1.4539	904L	N08904	С	240	270	530 - 730	35	35			
				Н	220	260	530 - 730	35	35			
				Р	220	260	520 - 720	35	35			
				R ¹	260	300	600	50	-			
				B1	400	_	600	20	-			
Ultra 254 SMO	1.4547	-	S31254	С	320	350	650 - 850	35	35			
				Н	300	340	650 -850	35	35			
				Р	300	340	650 -850	40	40			
				R ¹	340	380	680	50	-			
				B1	-	-	-	-	-			
Ultra 317L	1.4438	317L 2)	317L 2)	317L 2)	S31703	С	240	270	550 - 700	35	35	
				Р	220	260	520 - 720	40	40			
							R ¹	260	280	580	50	_
Ultra 4439	1.4439	317LMN	317LMN	317LMN	S31726	С	290	320	580 - 780	35	35	
				Н	270	310	580 - 780	35	35			
				Р	270	310	580 - 780	40	40			
Ultra 725LN	1.4466	-	S31050	Р	250	290	540 - 740	40	40			
Ultra 6XN	1.4529	-	N08926/ N08367	Р	300	340	650 - 850	40	40			
Ultra 4565	1.4565	_	S34565	С	420	460	800 - 950	30	30			
				Н	420	460	800 - 950	30	30			
				Р	420	460	800 - 950	30	30			
Ultra 654 SMO	1.4652	2 –	S32654	С	430	470	750 - 1000	40	40			
				Н	430	470	750 - 1000	40	40			
				Р	430	470	750 - 1000	40	40			

Note: Values according to EN 10088-2 unless marked otherwise.

 $\rm A_{80}$ initial length = 80 mm, A initial length = $\rm 5.65\sqrt{S_0}$ (A₅)

Product forms: cold rolled coil and sheet (C), hot rolled coil and sheet (H), quarto plate (P), wire rod (R), cold drawn bar, $10 < d \le 16\,$ mm (B). More product forms may be available than are shown in the table.

For more information, please see steelfinder.yttzhj.com

¹⁾ Outokumpu typical value.

²⁾ Also available as 317L with 11.7% Ni which is not consistent with 1.4438.

Imperial Control of the Control of t																	
Outokumpu EN name	ASTM		Product form	Yield strength R _{p0.2} (ksi)	Yield strength R _{p1.0} (ksi)	Tensile strength R _m	Elongation A _{so}										
Hame		Туре	UNS		N _{p0.2} (K31)	N _{p1.0} (K31)	(ksi)	(70)									
Ultra 904L	1.4539	904L	N08904	С	31	-	71	35									
				Н	31	-	71	35									
				Р	31	_	71	35									
				R 1)	38	44	87	-									
Ultra 254 SMO	1.4547	-	S31254	С	45	-	100	35									
				Н	45	-	95	35									
				Р	45	_	95	35									
				R ¹⁾	49	55	99	-									
Ultra 317L	17L 1.4438	1.4438	1.4438	1.4438	1.4438	1.4438	1.4438	1.4438	1.4438	1.4438	317L 2)	S31703	С	30	_	75	40
				Н	30	_	75	40									
				Р	30	_	75	40									
				R ¹⁾	38	41	84	-									
Ultra 4439	1.4439	317LMN	317LMN	317LMN	317LMN	317LMN	317LMN	317LMN	S31726	С	35	_	80	40			
				Н	35	-	80	40									
				Р	35	_	80	40									
Ultra 725LN	1.4466	-	S31050	С	39	-	84	25									
				Н	37	_	78	25									
				Р	37	_	78	25									
Ultra 6XN	1.4529	-	N08926/	С	45	_	100	30									
			N08367	Н	45	_	95	30									
				Р	45	_	95	30									
Ultra 4565	1.4565	-	S34565	С	60	-	115	35									
				Н	60	-	115	35									
				Р	60	-	115	35									
Ultra 654 SMO	1.4652	-	S32654	С	62	-	109	40									
				Н	62	_	109	40									
				Р	62	_	109	40									

 A_{50} initial length = 50 mm

Product forms: cold rolled coil and sheet (C), hot rolled coil and sheet (H), quarto plate (P), wire rod (R). More product forms may be available than are shown in the table.

For more information, please see $\,$ steelfinder.yttzhj.com $\,$

Note: Values according to ASTM A240 unless marked otherwise.

¹⁾ Outokumpu typical value.

²⁾ Also available as 317L with 11.7% Ni which is not consistent with 1.4438.

Physical properties

Metric							
Outokumpu name	Density [kg/dm³]	Modulus of elasticity at 20 °C [GPa]	Coefficient of thermal expansion 20–100 °C [10-6/K]	Thermal conductivity at 20 °C [W/(m x K)]	Thermal capacity at 20 °C [J/(kg x K)]	Electrical resistivity at 20 °C [Ω x mm²/m]	Magnetizable
Ultra 904L	8.0	195	15.8	12	450	1.00	No
Ultra 254 SMO	8.0	195	16.5	14	500	0.85	No
Ultra 317L	8.0	200	16.0	14	500	0.85	No
Ultra 4439	8.0	200	16.0	14	500	0.85	No
Ultra 725LN	8.0	195	15.7	14	500	0.80	No
Ultra 6XN	8.1	195	15.8	12	450	1.00	No
Ultra 4565	8.0	190	14.5	12	450	0.92	No
Ultra 654 SMO	8.0	190	15.0	111)	500	0.78	No

Note: Values according to EN 10088-1 unless marked otherwise. $^{1\!\mathrm{J}}$ Value measured by Outokumpu.

Imperial							
Outokumpu name	Density [lbm/in³]	Modulus of elasticity [psi]	Coefficient of thermal expansion 68–212°F [µin / (in x°F)]	Thermal conductivity [Btu/(hr x ft x °F)]	Thermal capacity [Btu/(Ibm x °F)]	Electrical resistivity $[\mu\Omega \ xin]$	Magnetizable
Ultra 904L	0.289	28 x 10 ⁶	8.8	6.9	0.108	39.37	No
Ultra 254 SMO	0.289	28 x 10 ⁶	9.2	8.1	0.120	33.46	No
Ultra 317L	0.289	29 x 10 ⁶	8.9	8.1	0.120	33.46	No
Ultra 4439	0.289	29 x 10 ⁶	8.9	8.1	0.120	33.46	No
Ultra 725LN	0.289	28 x 10 ⁶	8.7	8.1	0.120	31.50	No
Ultra 6XN	0.292	28 x 10 ⁶	8.8	6.9	0.108	39.37	No
Ultra 4565	0.289	28 x 10 ⁶	8.1	6.9	0.108	36.22	No
Ultra 654 SMO	0.289	28 x 10 ⁶	8.3	6.41)	0.120	30.71	No

Note: Values according to EN 10088-1 unless marked otherwise.

¹⁾ Value measured by Outokumpu.

Fabrication

Formability

Ultra range products have very good formability and are suitable for the full range of forming processes for stainless steel. The somewhat higher yield strength – and in some cases lower fracture elongation compared to the most common standard austenitic steel grades – can result in small differences in forming behavior depending on the chosen forming process, such as an increased springback. However, this can be compensated for, especially if the forming process can be designed for the specific product being used.

Moreover, an excellent interplay between the high yield strength, work hardening rate, and elongation mean that the high nitrogen containing products Ultra 4565 and Ultra 654 SMO are perfectly suited to lightweight and cost-effective applications with complex shapes.

The impact of high strength varies according to the forming technique. For all Ultra range products the estimated forming forces will be higher than for standard austenitic stainless steel products. This effect will be reduced if down-gauging is possible. In addition, the high yield strength of high-strength steels may result in higher demands on tools and lubricants, so down-gauging should be considered.

Cold forming

The high strength of the high nitrogen containing products Ultra 4565 and Ultra 654 SMO is clearly demonstrated when the stress-strain curves of high-performance austenitic stainless steel products are compared with the standard austenitic product Supra 316L/4404. The deformation-hardening rate is very similar for all austenitic products. The formability of Ultra range products can be characterized in several ways. The sheet material's ability to withstand thinning during forming is demonstrated by the R-value in different tensile directions – the higher the R-value, the better. Ultra 654 SMO has excellent R-values.

Hot forming

Higher temperatures cause deterioration in ductility and increased oxide formation (scaling). Normally, hot forming should be followed by solution annealing and quenching but, for Ultra 904L, if the hot forming is discontinued at a temperature above 1100 °C/2010 °F and the material is quenched directly thereafter, it may be used without subsequent heat treatment. It is important that the entire piece being formed is guenched from temperatures above 1100 °C/ 2010 °F. In the case of partial heating or partial cooling below 1100 °C/2010 °F, or if the cooling has been too slow, hot forming should always be followed by solution annealing and quenching. Ultra 254 SMO, Ultra 4565, and Ultra 654 SMO should be quenched at a temperature of at least 1150 °C/2100 °F after hot forming to remove intermetallic phases formed during the hot forming process. These phases can also recur if the subsequent cooling process is too slow, resulting in impaired corrosion resistance.

Machining

Austenitic stainless steels work harden quickly. Together with their high toughness, this means that they are often perceived as problematic from a machining perspective, for example in operations such as turning, milling, and drilling. This applies to an even

greater extent to most highly alloyed steels, especially those with a high nitrogen content – i.e. Ultra 254 SMO, Ultra 6XN, Ultra 4565, and Ultra 654 SMO. However, with the right choice of tools, tool settings, and cutting speeds, these products can be successfully machined.

See also the Outokumpu machining guidelines.

Welding

Ultra range steels are well suited for welding, and the methods used for welding conventional austenitic steels can also be used on these products. However, due to their stable austenitic structure, they are somewhat more sensitive to hot cracking in connection with welding, so in general welding should be performed using a low heat input.

On delivery, sheet, plate, and other processed products have a homogeneous austenitic structure with an even distribution of alloying elements. Solidification after partial remelting, for example by welding, causes redistribution of elements such as molyb- denum, chromium, and nickel. These variation remain in the cast structure of the weld and can impair corrosion resistance in certain environments. Segregation tendency is less evident in Ultra 904L, and this product is normally welded using a filler of the same composition as the base material. It can even be welded without filler.

For Ultra 254 SMO, Ultra 6XN, Ultra 4565, and Ultra 654 SMO, the variation for molybdenum in particular is so great that it must be compensated for by using fillers with a higher molybdenum content.

Outokumpu name	Welding consumables	
	Covered electrodes ISO 3581 ISO 14172	Wires ISO 14343 ISO 18274
Ultra 904L	20 25 CuL	20 25 CuL
Ultra 254 SMO	Ni Cr 21 Mo Fe Nb or Ni Cr 25 Mo 16 or P54*	Ni Cr 22 Mo 9 Nb
Ultra 317L	317L	317L
Ultra 4439	19 13 4 NL or 20 25 5 CuL	19 13 4 NL or 20 25 5 CuL
Ultra 6XN	Ni Cr 21 Mo Fe Nb or Ni Cr 25 Mo 16 or P54*	Ni Cr 22 Mo 9 Nb
Ultra 4565	Ni Cr 21 Mo Fe Nb or Ni Cr 25 Mo 16 or P54*	Ni Cr 22 Mo 9 Nb
Ultra 254 SMO	Ni Cr 21 Mo Fe Nb or Ni Cr 25 Mo 16 or P54*	Ni Cr 22 Mo 9 Nb

*Avesta Welding designation. For use in certain oxidizing environments, e.g. chlorine dioxide stage in pulp bleaching plants, when welding Ultra 254 SMO or Ultra 4565.

Standards and approvals

The most commonly used international product standards are given in the table below. For a full list of standards by product, see steelfinder.yttzhj.com

Standards	
European deliv	ery standards
EN 10028-7	Flat products for pressure purposes – Stainless steels
EN 10088-2	Stainless steels – Corrosion resisting sheet/ plate/strip for general and construction purposes
EN 10088-3	Stainless steels – Corrosion resisting semi-fin- ished products/bars/rods/wire/sections for general and construction purposes
EN 10088-4	Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes
EN 10088-5	Technical delivery conditions for bars, rods, wire sections and bright products of corrosion resist- an steels for construction purposes
EN 10272	Stainless steel bars for pressure purposes
EN 10283	Corrosion resistant steel castings
ASTM/ASME de	elivery standards
ASTM A 193 / ASME SA-193	Alloy and stainless steel bolts and nuts for high pressure and high temperature service
ASTM A 240 / ASME SA-240	Cr and Cr-Ni stainless steel plate/sheet/strip for pressure purposes
ASTM A 276	Stainless and heat-resisting steel bars/shapes
ASTM A312 / ASME SA-312	Seamless and welded austenitic stainless steel pipe
ASTM A351 / ASME SA-351	Steel castings, austenitic, duplex for pressure containing parts
ASTM A 358 / ASME SA-358	Electric fusion-welded austenitic Cr-Ni alloy steel pipe for high temperature
ASTM A 409 / ASME SA-409	Welded large diameter austenitic pipe for corrosive or high-temperature service
ASTM A 473	Stainless steel forgings for general use
ASTM A 479 / ASME SA-479	Stainless steel bars for boilers and other pres- sure vessels
ASTM A 743	Castings, Fe-Cr-Ni, corrosion resistant for general application
ASTM A 744	Castings, Fe-Cr-Ni, corrosion resistant for severe service
ASTM B 649 / ASME SB-649	Bar and wire
Other common	specification standards
NACE MR0175	Sulfide stress cracking resistant material for oil field equipment
Norsok M-CR-630	Material data sheets for 6Mo stainless steel
VdTÜV WB 473	Austenitischer Stahl X 1 CrNiMoCuN 20 18 7 Werkstoff-Nr. 1.4547
VdTÜV WB 537	Stickstofflegierter austenitischer Stahl X2CrNiMn- MoN 25-18-6-5 Werkstoff-Nr 1.4565

Certificates and approvals

- AD 2000 Merkblatt
- Approval of Material Manufacturers
- Factory Production Control Certificate
- ISO 14001
- ISO 50001
- ISO/TS 16949
- NORSOK
- OHSAS 18001
- Pressure Equipment Directive (PED)

For the list of certificates and approvals by mill, see yttzhj.com/certificates

Contacts and enquiries

Our experts are ready to help you choose the best stainless steel product for your next project.

yttzhj.com/contacts

Own notes

Working towards forever.

We work with our customers and partners to create long lasting solutions for the tools of modern life and the world's most critical problems: clean energy, clean water, and efficient infrastructure. Because we believe in a world that lasts forever.

outokumpu classic

Moda

Mildly corrosive

Core

Corrosive environments Supra

Highly corrosive environments

outokumpu pro

Forta

Duplex & other high strength Ultra

Extremely corrosive environments Dura

High hardness **Therma**

High service temperatures **Prodec**

Improved machinability Deco

Special surfaces

Information given in this data sheet may be subject to alterations without notice. Care has been taken to ensure that the contents of this publication—are accurate but Outokumpu and its affiliated companies do not accept—responsibility for errors or for information which is found to be misleading. Suggestions for or descriptions of the end use or application of products or methods of working are for information only and Outokumpu and its affiliated—companies accept no liability in respect thereof. Before using products—supplied or manufactured by the company the customer should satisfy himself of their suitability.

MODA, CORE, SUPRA, FORTA, ULTRA, DURA, THERMA and DECO are trademarks of Outokumpu Oyj.

PRODEC, EDX, FDX, FDX 25, FDX 27, LDX, 253 MA, 254 SMO, 654 SMO, LDX

2101, LDX 2404 are registered trademarks of Outokumpu Oyj.